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A general method of molecular packing analysis based on the minimization of the crystal lattice energy 
is described. The lattice energy was approximated by a pairwise sum over nonbonded atoms in different 
molecules, using (exp-6-1) potential functions. Increased speed of calculation of the lattice sums was 
achieved by a convergence acceleration technique. The variables considered were six rigid body rota- 
tions and translations for each molecule in the asymmetric unit, and the six lattice constants. Molecular 
flexibility was allowed in the form of internal rotations about bonds (subrotations). In this event ad- 
ditional subrotation potentials of the cos 2 ~' type could be used to allow for conjugation energy, and the 
subrotation angles were additional variables. An optional thermal correction, based on the mean square 
thermal amplitudes and the potential anharmonicities, was applied to calculate the anisotropic thermal 
expansion. Nonbonded potential parameters, including conjugation energies, were found by fitting them 
to observed crystal structures. 

Introduct ion 

The study of molecular packing in crystals gained in- 
creased popularity as the result of the appearance of a 
book by Kitaigorodsky (1955). References to recent 
work in this field may be found in review articles by 
Mason (1970) and by Kitaigorodsky (1970). 

In the present work the intermolecular lattice energy 
of a crystal was approximated by a pairwise sum of 
(exp-6-1) nonbonded interatomic potential functions: 

E= ½ j~km [B,~ exp (-- CaBrjkm)-- A~orj-£ ~ q- q, qFs-£~] , 

where rskm is a nonbonded interatomic distance, A,~ is 
the coefficient of the London dispersion attraction 
term between atoms of type ~ and fl, B,a and C,a cha- 
racterize the short-range repulsive energy, and q~ is the 
electrostatic charge on the atom. Subscript j runs over 
the atoms of the asymmetric unit, k over all atoms in 
different molecules, and m over the space group sym- 
metry operations of the unit cell. In practical computa- 
tion advantage may be taken of the fact that rjkm= 
rksm', where m' represents the symmetry operation in- 
verse to m. Thus the sum may be taken o v e r j > k ,  with 
the j >  k terms being given double weight. Additional 
intramolecular terms may optionally be included if the 
molecule is not rigid. 

The theoretical model assumes that the molecules 
are rigid except for internal rotations about bonds 
(subrotations). It may be desirable to shift the hydro- 
gen atom repulsion centers inward along the bond axis 
(Williams, 1965). Higher order terms in r -s, r -1° etc. 
are neglected, as are nonpairwise additive effects (Mar- 
genau & Kestner, 1969; Hirsch£elder, 1967) and aniso- 
tropic dispersion interactions (Haugh & Hirschfelder, 
1955; Sternlicht, 1964; Cheng & Nyburg, 1969). 

* Supported by a research grant from the U.S. Public 
Health Service. 

Evaluat ion  o! derivatives 

The following equations have been incorporated into 
a Fortran computer program, designated PCK6. In 
an early version of this program, the first and second 
derivatives of the lattice energy were evaluated nume- 
rically. In an effort to speed up the calculation, a later 
version was written in which all derivatives were eval- 
uated analytically. This change resulted in a decrease 
of about 50 % in computer time required for a typical 
calculation. 

An interatomic distance, rjkm, between atom j and 
atom k transformed by symmetry operation m is eva- 
luated by the equation (Williams, 1969): 

where 

rjkm = (C 2 + r~2 ± :,2w2 _ ,~2~,-3: -ICI, 

C = X j  - S mXk -- T m •  

Here Xj are the Cartesian atomic coordinates of the 
asymmetric unit, $m is a 3 x 3 matrix giving the point 
symmetry, and T,, is a vector giving the translation 
symmetry including cell translations. The first deriva- 
tive with respect to a parameter, p, is given by 

Or 1 [ C1 OC1 OC2 
~p - r -b-U + q ~ p  

oq 1 - -  + q - ~ - j .  

The second derivatives with respect to parameters p ,  
and pv are given by 

~2r 1 [ C1 ~2C1 3zC2 ~2Ca 

isc, 1 lsc,  l qi 

~Ca t ~ ~Ca ~ Or Or 
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Lattice constants 
The effect of a lattice constant change is to change 

only T; the Xj are invariant. It is convenient to refer 
the lattice constant changes to the translation vector 
in unit-cell space, t, where T =  Dt, 

ra sin7 0 c(cos f l - cos  c~ cos 7)/sin 7] 
D = [~) cos 7 b c cos c~ 1 0 V/ab sin 7 

and 

V= abe(1 - cos z c~- cos z ,8-  cos z 7 + 2 cos ~ cos,8 cos 7) t/z 
= a b e l .  

Thus, the components of T may be expressed in terms 
of the components of t" 

7"1 = fia sin 7 + t3c(cos fl-- COS ~X COS 7)/sin y 
T2 = qa cos y + t2b + t3c cos c~ 
T3 = t3cg/sin 7. 

Of the 81 first and second derivatives, 45 are zero. 
Derivation of the analytical form of the nonzero deri- 
vatives is straightforward, but somewhat tedious. For 
convenience, the results are displayed in Table 1. 

Molecular rotations 
We wish to rotate the rigid body through angle 0 

about axis I, where I11= 1. The 1~ are thus the direction 
cosines of the rotation axis with respect to the refer- 
ence cartesian system defined by matrix D. The effect 
of the rotation is given by the matrix equation (Inter- 
national Tables for X-ray Crystallography, 1959), 

X j=  R(0,1)X~, 
where 

[cos 0+ l~(1 - c o s  0) l J z (1 - cos  0) 
R =  [l~lz(1-cos 0)-13 sin 0 cos0+l~(1 

[1113(1 - c o s  0)+/2 sin 0 /J3(1-cos 

T is not affected by the rotation. The three rotation 
axes were taken parallel to the principal axes of iner- 
tia. The order of differentiation is significant, since 
rotations about different axes do not commute. The 
effect of first applying rotation Rv and then R, is" 

X j =  R,R~(X3- X~,) + R,(X~-  X"o) + X"o, 

where X ° are the trial atomic coordinates, and X~ and 
X~ are the respective centers of rotation. 

Since the rotation variables are separated in R~ and 
R~,, the second derivatives depend only on the first 
rotation center X~, and not on Xg. The first derivatives 
(evaluated at the trial coordinates) are given by the 
matrix equation 

OC 
80 - L ( X 3 - X ° ) -  SL(Xt,-Xo) 

where [7:'3 ,21 L =  /3 o /1 . 

- l z  0 

It is easily verified that these equations for the first 
derivatives reduce to those shown by Williams (1969), 
except for a reversal of rotation direction, if ! is taken 
parallel to any of the Cartesian axes. The second deri- 
vatives are given by 

gzC 
OO.gO~ = L.L,,(X~- X~)- SL.L~(X~- Xo~). 

Translations 
The first derivatives are: 

gC 
- l , - - S l , .  

~AX~ 

As above, the equations simplify if Iv is parallel to a 
Cartesian axis. The second derivatives with respect to 
translation are all zero. 

Subrotations 
Internal molecular rotations may be handled by 

analogy with molecular rotations. A difference is that 
only the atoms in the rotating subgroup are affected 
by the subrotation, and therefore a given nonbonded 
contact (perhaps intramolecular) may or may not con- 
tribute to derivatives involving subrotations. The sub- 
rotation axis, of course, is taken coincident with the 
bond joining the subgroup to the molecule. The sub- 
rotation conjugation potentials were taken as 

_ _  O E c - E e  cos 2 N , 

where E ° is the (negative) conjugation energy for ~, = 0. 
The subrotation angle, ~,, may be defined by any four 
nonlinear atoms. If we designate the atom sequence 
(3,1,2,4), ~ is the angle between planes defined by 

+/3 sin 0 1113(1 - c o s  0) - /2  sin 0] 
- c o s  0) /2/3(1-cos 0)+ 11 sin 0 | . 
0 ) -  /1sin 0 cos 0+ /~ (1 -cos  0)] 

atoms (3,1,2) and (1,2,4). Thus (1,2) is the bond joining 
the subgroup to the molecule, and 3 and 4 are rotation 
reference atoms defining ~,. Atoms 2 and 4 are in the 
subgroup. 

Evaluation of the lattice sum 

The theory of convergence acceleration of general lat- 
tice sums of the type ~.q'~q'Br-" has been discussed by 
Williams (1971). The application of convergence ac- 
celeration to the coulombic energy is straightforward, 
since q' may be set equal to q in this case. For the 
London dispersion energy we set q '=  I/A. The appli- 
cation of the convergence acceleration technique re- 
quires that the geometric-mean combining law hold, 
i.e. that A ~  = [/(A~AB~). 

The geometric-mean combining law seems to be a 
fairly good approximation for the London dispersion 
energy. London's (1930) classic formula, 
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relates the dispersion energy to the ionization energy 
l a n d  the polarizability p. Since the range of variation 
of the polarizabilities is much greater than that of the 
ionization energies, the geometric mean laws holds 
fairly well (Hirschfelder, Curtiss & Bird, 1954). This 
has been experimentally verified in hydrocarbon cry- 
stals (Williams, 1966, 1967). 

In contrast, theory does not predict that the geo- 
metric-mean combining law holds for short-range re- 
pulsion. For hydrocarbon crystals, analysis of experi- 
mental data indicates that Ben is significantly less than 
would be predicted by this combining law (Williams, 
1966, 1967). Fortunately, the repulsive energy decreases 
so rapidly that all significant terms may be summed 
directly without the need for convergence acceleration. 

In program PCK6 only the direct lattice sum, and 
the constant terms, are evaluated. Therefore, the max- 
imum summation limit on rjk m and the values of the 
convergence constants, Kt and/£6, were selected so as 
to make the reciprocal sum negligible. At a 1% error 
level, the use of convergence acceleration yielded a 
factor of about ten in increased speed of calculation, 
without considering the reciprocal space lattice sum. 

With convergence acceleration, the lattice sum is 
given by: 

E=½ ~ [B,,t~ exp ( -  - 6  z 1 4 C~ar jkm) --  A~ar jkm(1-1- a 6 q- 2a6)  
jkm 

× exp ( -a~)  + q~qarf~erfc (a~)] 

z3K6Z 7~3K3 ( ~  "4112"12 "Jl- . . . . .  ( ~  Ao~) 
6V ,~ " ' ~ "  12 ,, 

- - K , Z ( ~  q~), 
o~ 

2 2 erfc(a0= exp ( - t2)d t ,  Z is the where a~ = r~K~ rj~m, 
al 

number of molecules in the unit cell, and A,a = ( A ~ )  I/2 
(A#o) ~/z. The first derivatives with respect to a param- 
eter p are 

OE 
- ½ ~ { - B..,C..a exp ( - C,#rjkm) "q- A~t~rgk-Tm 

¢~ P .i k m 

x ( 6 + 6 a ~ + 3 ~ + a  6) exp ( z -z - a6 )  - q~qorjkm 

~rjkm x [2K:jkm exp (--alZ)+erfc (al)]} 0p 

A 2) 2 
+-6-W Op 

Table 1. Derivatives of  C1, Cz, and Ca with respect to the lattice constants 

C1 

P a r a m e t e r  a b c 0¢ ,8 y 
F i r s t  1 0 2 3 4 5 
S e c o n d :  a 0 0 0 0 0 15 

b 0 0 0 0 0 
c 0 17 18 19 

24 0 25 
,8 30 31 
y 34 

1 : - tl sin 7 
2:  - t3 (cos  , 8 -  cos  g cos  y)/sin y 
3 : - tac sin ~ cos  y/sin y 
4: t3c sin ,8/sin y 
5: - t x a c o s y  

-t- t3c (cos  ,8 cos  y - cos  ~)/sin2y 
6: - t l  cos  y 
7 : - - t 2  
8: - - t 3 c o s t x  

C2 C3 

a b c ~ ,8 y a b c a ,8 y 
6 7 8 9 0 10 0 0 11 12 13 14 
0 0 0 0 0 16 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 
0 20 0 0 0 21 22 23 

26 0 0 27 28 29 
0 0 32 33 

35 36 

9: t3c sin 
10: t i a  sin y 
11 : -- t3 8/sin y 
12: t3c sin a (cos  , s cos  y - - c o s  c¢)/(8 sin y) 
13 : t3c sin ,8 (cos  ~ cos  y - -  cos  ,8)/(8 sin y) 
14: t3c [(cos ~ cos  ,8-- cos  y)/8 + 6 cos  y/sin2 y] 
15: - - t l c o s y  
16: t l  sin y 
17: -- t3 sin 0¢ cos  y/sin y 

t3c 
27:  ~ [(cos a cos  ,8 cos  y - cos2 a + sin2 ~) + sin2 a (cos  ,8 cos  y - cos  ¢02/82] 

t3c 
28:  ~ [sin ,8 sin ~ (cos  a cos  y -  cos  ,8) (cos  ,8 cos  y - cos  ~ ) / 6 2 -  sin ~ sin fl cos  y] 

o ~illl y 

18: t3 sin ,8/sin 9' 
19: t3 (cos  ,8 cos  y -  cos  ~)/sin2 y 
2 0 : t 3  sin c~ 
21 : t3 sin a (cos,8 cos  y - c o s  ~.)/(6 sin y) 
2 2 : t 3  sin ,8 (cos  ~ cos  y - c o s  ,8)/(8 sin y) 
23 : t3 [(cos ~ cos  f l -  cos  y)/8 + 6 cos  y/sin2 y] 
2 4 : - t 3  c cos  ~ cos  y/sin y 
25:  t3c sin ~/sin2 y 
26:  t3c cos  c¢ 

29:  t3c sin a [ - cos /3 /8  - cos  y (cos  fl cos  y - cos  a) /8  sinZ y + (cos  fl cos  y - cos  c¢) (cos  a cos  f l -  cos  7)I83] 
30:  t3c cos  fl/sin y 

31 : - t3c sin fl cos  y/sin 2 y 

t3c 
32: ~ [cos a cos  # cos  y -  cos2 fl + sin2 ,8 + sin2 ,8 (cos  ~ cos  y -  cos  ,8)2/82l 

t3c cos  y sin ,8 
33 : ~ [sin ,8 sin y (cos  a cos  , 8 -  cos  y) (cos  ~ cos  y - cos  ,8)/82 - cos  ~ sin fl sin y - sin y 

34:  t la  sin y -  t3c [cos ,8(1 + cos  2 7 ) -  2 cos  0c cos  y]/sin3 y 

35:  t l a c o s  y 

36:  t3c [sin 7 / 8 - 6 ( c o s  2 y + 1)/sin3 y - c o s  y (cos  ¢¢ cos  f l - c o s  7)/(8 sin 7 ) +  sin 7 (cos  ¢¢ cos  , 8 - c o s  y)2[~3] 

(cos ~ cos y -  cos p)] 
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T h e  s e c o n d  de r iva t ives  are  g iven  by  

32E 
- ½ ~,, {B=~C~eexp (-C~er~k~) 

x [C~e \ Op, ~ \ Opv / OpuOp~ 1 

- A,er ~ exp ( -  a~) 

x [(42 + 4 2 a 6  ~ + 21aa + 7a 6 + 2a~) (8_r,~., I [ Or'g'" t 
\ ~'p. I \  Op~ ] 

(_O:rj~m_l] 
-- rjk,,,(6 + 6a~ + 3a a + 4 )  ap.ap , 

+ - 3 {  q,q#jkm [2 erfc ( a l ) +  4Ktrjk, .  exp (--a~)  

x (1 +a~)] ~,a~-2-! ~, ap~ , 

-[rj~erfc(aO+2K~rS~exp(-a~)],Op.Op~)}} 
(z n3K36 ,/2 

+ -gV2 A= 

[ O2V 2 OV a V  

Cell volume derivatives 
T h e  cell v o l u m e  der iva t ives  are  o b t a i n e d  in a s t ra igh t -  

f o r w a r d  m a n n e r  and  are  l i s ted  in T a b l e  2 for  c o n v e n i e n t  
reference .  T h r e e  o f  t he  poss ib le  27 first a n d  s e c o n d  
der iva t ives  a re  zero.  

Lattice sum derivatives 
T h e  first a n d  s e c o n d  de r iva t ives  o f  the  la t t ice  s u m  

m a y  n o w  be e v a l u a t e d  a t  t he  t r ia l  m o d e l  c o o r d i n a t e s  

by s u b s t i t u t i o n  o f  t he  cell v o l u m e  der iva t ives  a n d  t he  
n o n b o n d e d  d i s t ance  der iva t ives  b a c k  in to  the  a b o v e  
e q u a t i o n s .  Since no  s impl i f i ca t ion  o f  the  e q u a t i o n s  oc- 
curs,  in p rac t ice  the  cell v o l u m e  a n d  d i s t ance  der iva-  
t ives are  e v a l u a t e d  n u m e r i c a l l y  be fo re  subs t i t u t i on .  

Lattice energy minimization 

P r o g r a m  P C K 6  p r e p a r e s  a t ab l e  o f  n o n b o n d e d  con -  
tacts  for  use  in several  r e f i n e m e n t  cycles.  Since t he  
s e c o n d  de r iva t ives  c h a n g e  re la t ive ly  s lowly,  a n d  are  
t i m e - c o n s u m i n g  to  eva lua te ,  they  are  e v a l u a t e d  on ly  
o n c e  fo r  t he  table .  T h e  first de r iva t ives  a re  r e - e v a l u a t e d  
for  each  cycle o f  r e f i nemen t .  

T h e  m a t r i x  o f  the  s e c o n d  de r iva t ives  is n o t  in gene ra l  
symmet r i c ,  bu t  it m a y  be  s e p a r a t e d  in to  s y m m e t r i c  a n d  
a n t i s y m m e t r i c  par ts .  T h e  e igenva lues  o f  t he  s y m m e t r i c  
par t  we re  found .  I f  all e igenva lues  were  n o n z e r o  a n d  
pos i t ive ,  a G a u s s - N e w t o n  r e f i n e m e n t  cycle  was  per -  
f o r m e d .  This  w o u l d  n o r m a l l y  be  the  case if  t he  t r ia l  
m o d e l  were  c lose  to  an  ene rgy  m i n i m u m .  T h e  G a u s s -  
N e w t o n  cycle r equ i r e s  the  so lu t ion ,  Ap, to  the  m a t r i x  
e q u a t i o n  

F A p = g ,  
w h e r e  

a n d  

{ 3ZE 1 .  

I f  any  e i g e n v a l u e  was  ze ro  or  nega t ive ,  a s t eepes t  des-  
cen t  r e f i n e m e n t  cycle was  p e r f o r m e d .  T h a t  is, t he  pa ra -  
m e t e r s  were  sh i f ted  a c c o r d i n g  to  the  e q u a t i o n  

c~E 
A p =  - 2  

0 p '  

w h e r e  2 is in i t ia l ly  c h o s e n  large.  I f  the  e n e r g y  fa i led  to  
dec rease  a f te r  t he  shifts  we re  m a d e ,  2 was  h a l v e d  a n d  

First 

Second: a 
b 
C 

B 
y 

1 : b c 6  
2 : a c 6  
3 : a b 8  

a b c 
1 2 3 
0 7 8 

0 12 
0 

4: abe sin ~ (cos ~ - c o s  flcos y)16 
5: abe sin fl (cos f l -  cos ~ cos y)16 
6: abc sin v (cos y - c o s  0~ cos fl)/6 

T a b l e  2. Derivatives o f  the unit cell volume 

4 5 6 
9 10 11 

13 14 15 
16 17 18 
19 20 21 

22 23 
24 

7 : e 6  
8 : b 8  
9: be sin c~ (cos 0~ - cos fl cos y)/6 

10: be sin fl (cos f l -  cos 0c cos y)/6 
11 : be sin y (cos y - cos ~ cos fl)/8 
12:a6 

19: abc [(cosZ 0~ - sinZ ~ - cos ~ cos fl cos y)18 - sin2 ~ (cos ~ - cos fl cos y)2/&3] 
20: abc [sin c~ sin fl cos ~,/&-sin ~ sin fl (cos f l - c o s  0~ cos y) (cos 0~-cos fl cos y)/33] 
21 : abc [sin ~ cos fl sin y / 6 - s i n  c~ sin y (cos 0~-cos fl cos y) (cos y - c o s  c~ cos ,8)/63] 
22: abc [(cos2 f l -  sinZ fl - cos ~ cos fl cos y)/& - sin2 fl (cos fl - cos ~ cos y)z/63] 
23 : abc [cos ~ sin fl sin 7/6 - sin fl sin y (cos f l -  cos ~ cos y) (cos y - cos ~ cos ,8)/63] 
24: abc [(cosZ y -  sinZ y -  cos ~ cos fl cos y)/&- sin2 y (cos y -  cos ~ cos fl)/&3] 

13 : ac sin ~ (cos 0~ - cos fl cos y)/8 
14: ac sin fl (cos f l - c o s  0~ cos y)/6 
15 : ac sin y (cos y -  cos ~ cos fl)/8 
16: ab sin 0~ (cos ~ - cos fl cos y)/fi 
17 : ab sin fl (cos f l -  cos ~ cos y)/6 
18 : ab sin y (cos y - cos c~ cos fl)/6 
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another attempt was made (binary chopping). Bi- 
nary chopping of the shifts was also performed for the 
Gauss-Newton shifts, if necessary. Steepest-descent 
cycles of refinement were generally selected when the 
trial model was not close to an energy minimum. 

The relative merits of steepest descent and Gauss- 
Newton refinement have been discussed, for example. 
by Marquardt (1963). The steepest-descent method has 
the widest convergence range but suffers from a slow 
convergence rate near the minimum. The Gauss- 
Newton method has a smaller range of convergence but 
a faster convergence rate near the minimum. 

R e s u l t s  o f  c a l c u l a t i o n s  

We have made several types of calculations with PCK6 
for hydrocarbon crystals. For these crystals electrostatic 
and multipole effects are small and may be neglected 
(Kitaigorodsky & Mirskaya, 1964; Mason, 1970). 

Derivation of nonbonded potential parameters 
If reasonable values for C~a can be assumed, the 

lattice energy is linear in the nonbonded potential 
parameters A~a and B~a. These parameters may be de- 
rived from observed crystal structures by a least-squares 
fitting process. The number of observational equations 
is equal to the geometrical degrees of freedom for each 
structure, with a maximum of 12 equations for the 
rotation and translation of one molecule in a triclinic 
unit cell. The scale of A~a and B~ B may be set by fitting 
the calculated lattice energy to the observed heat of 
sublimation at absolute zero. The second derivatives 
of the lattice energy may also be related to the elastic 
constants, yielding more observational equations (Ki- 
taigorodsky & Mirskaya, 1964). 

For hydrocarbons, assuming the geometric-mean 
combining law for the dispersion attraction, values of 
Acc, AnH, Bcc, Bcn and Bnn are sought. It is expected 
that the most universally applicable values would be 
obtained by fitting a large number and variety of hy- 
drocarbon crystal structures simultaneously. The most 
exhaustive calculation reported so far is that of Wil- 
liams (1970) where 130 observational equations from 
18 hydrocarbon crystal structures were fitted. It was 
found that the same C . . .  C parameters could be used 
for both aromatic and saturated carbon atoms, at this 
accuracy level. Also, no evidence was found for bond- 
centered, rather than atom-centered, dispersion attrac- 
tions. 

Derivation of phenyl-phenyl conjugation energy 
We selected the structure of p,p'-bitolyl (Casalone, 

Mariani, Magnoli & Simonetta, 1969) for derivation 
of the phenyl-phenyl conjugation energy. In this struc- 
ture there are two molecules in the asymmetric unit, 
with twist angles of 36 and 40 ° . Thus, the geometrical 
structure is specified by 6 rotations, 6 translations, 2 
subrotations, and the lattice constants. 

In our calculations we held the lattice constants 

fixed, because allowing them to vary might lead to 
poorer values for the conjugation energy. This could 
happen because of a combination of untreated effects 
such as those mentioned in the introduction: nonpair- 
wise additivity, anisotropic dispersion forces, higher 
order terms in r-" ,  deviations from the geometric-mean 
combining law, etc. 

The molecular geometry was taken as two regular 
hexagonal arrays joined together, with attached tetra- 
hedral methyl groups. In the rings, the C-C and C-H 
distances were set as 0.1397 and 0.1027 nm, with a 
central bond length of 0.1473 nm. The methyl C-C 
and C-H distances were set as 0.1520 and 0.1040 nm, 
and the observed rotational orientation was approxi- 
mated. The C-H distances were assumed to be fore- 
shortened by 0.0070 nm (Williams, 1965). The non- 
bonded parameters used were set (C) of Williams 
(1970). 

Successive calculations were made, minimizing the 
lattice energy each time as a function of the 14 vari- 
ables. As E ° was made larger in magnitude, the mol- 
ecules became more planar. Table 3 shows the results 
obtained for the twist angles as a function of E °. It is 
seen that the observed conjugation energy is about 
- 9 . 0  cos z~, kcal/mole for each molecule. The calcu- 
lations confirm that the difference of 4 ° in the twist 
angles is indeed an intermolecular packing effect. 

Table 3. Conjugation energy of  p,p'-bitolyl (kcal/mole 
and o) 

Ec ° ~1 (calc.) Yz (talc.) 
-- 7.0 39.6 44.7 
- 8.0 37.5 42.6 
- 9-0 35-7 40.8 

- 10.0 33.0 38.8 

For comparison, Fischer-Hjalmars (1963) calculated 
0 _ _  E c - -  6.2 kcal/mole for gaseous biphenyl by the Pa- 

riser-Parr-Pople method. Dashevsky & Kitaigorod- 
sky (1967) used E ° = - 9  kcal/mole to obtain the gas 
phase twist angle of biphenyl. They used a different set 
of hydrocarbon nonbonded potential functions, and 
also set E c -  o - E c  cos ~. Casalone et al. (1968) calculated 
E ° = - 7 . 6  kcal/mole by the Hfickel method. Dewar & 
Harget (1970) calculated E ° = - 8 . 8 7  kcal/mole by a 
semi-empirical self-consistent-field molecular-orbital 
treatment. While our excellent agreement with Dewar 
& Harget's value may be fortuitous (the methyl 
groups, for example, may have some effect on E°), the 
present results indicate some utility for this method of 
obtaining conjugation energies. 

We have also calculated the twist angle of the iso- 
lated gaseous p,p'-bitolyl molecule, using E ° = - 9 - 0  
kcal/mole, and including all nonbonded interactions 
between the two halves of the molecule. We obtained 

= 33.2 °, which is less than the twist angle of either 
molecule in the asymmetric unit of the crystal. This 
result is in contrast to biphenyl, where the twist angle 
is less (zero, in fact) in the crystal than in the gas phase. 
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Thus the intermolecular energy tends to flatten bi- 
phenyl molecules, but twists p,p'-bitolyl molecules in 
the crystal. 

Thermal expansion 
An approximate method of calculating anisotropic 

thermal expansion has been detailed elsewhere (Wil- 
liams, 1972). This method is based on increasing the 
B~B by an amount sufficient to shift the minimum of 
the nonbonded potential by Ar, where Ar is obtained 
from the mean-square thermal amplitude and the non- 
bonded potential anharmonicity. 

Convergence to the geometrical structure 

The range of convergence as used in this section refers 
to the maximum range of the trial coordinates which 
leads to the success of either a steepest descent or 
Gauss-Newton refinement. This attribute of molec- 
ular packing analysis is most important when dealing 
with unknown geometrical parameters and known po- 
tential parameters. 

We investigated the range of convergence using the 
observed crystal structures of benzene (Bacon, Curry 
& Wilson, 1964), naphthalene (Cruickshank, 1957), 
and phenanthrene (Trotter, 1963). The first two struc- 
tures are centric, with no molecular translation allowed, 
since the molecules have crystallographic l symmetry. 
The phenanthrene structure is acentric, with no mole- 
cular symmetry. Only two molecular translations are 
allowed, since the space group is polar in one direc- 
tion. 

We were particularly interested in comparing the 
presently described program, PCK6, with our earlier 
program, PCK5. Program PCK5 may be regarded as 
a simplified version of PCK6, in which the nonbonded 
repulsion is approximated by a quadratic curve. Since 
no attractions are considered, there are relatively few 
terms in the lattice sum, and PCK5 is quite fast in exe- 
cution even without convergence acceleration. Further, 
since the repulsion energy is represented by a sum of 
squared terms, the very powerful full-matrix least- 
squares technique may be used in PCK5. It is apparent 
that the lattice constants must be known when using 
PCK5, but not necessarily known when using PCK6. 

For benzene, we duplicated the convergence test 
made with PCK5 (Williams, 1969). The results with 
PCK6 were not quite as good, with one starting orien- 
tation (out of 12) failing to converge to the correct 
structure. We tested the false minimum from PCK6 
with PCKS. The false minimum persisted, and PCK5 
also failed to converge to the correct structure. Thus 
PCK5 had somehow skipped over this false minimum 
structure in the earlier calculation. 

For naphthalene and phenanthrene we made similar 
convergence tests. Our conclusion from these tests was 
that PCK5, the quadratic-repulsion-only program, con- 
converged over a larger range of trial models than 
PCK6, the complete (exp-6) program. A part of the 

difference probably lies in the fact that the (exp-6) po- 
tentials have a physically unrealistic minimum at r =  0 
(Kitaigorodsky & Dashevsky, 1967). Even if this fea- 
ture is removed from the potential, another problem 
remains. Two molecules can interpenetrate in the trial 
structure, thus locking together and effectively stop- 
ping refinement. A visual examination of the model 
will quickly reveal such cases; a cathode-ray tube dis- 
play attached online to the computer would be most 
helpful. We have attempted to avoid this problem in our 
computer program by keeping the centers of the molecu- 
les always sufficiently far apart. But since the molecules 
are not spherical in shape, this approach is not always 
successful. An incorrect mode of molecular interlocking 
may also lead to a false minimum, e.g. in naphthalene 
(Williams, 1969). 

In any case, since PCK5 runs much faster on the 
computer, its use seems preferable in the early stages 
of a packing analysis calculation, if the lattice constants 
are known. An early example of the use of this type 
of calculation for an unknown structure with the mol- 
ecule in a general position is dibenzoylmethane (Wil- 
liams, 1966a). If greater accuracy is required, the model 
obtained from PCK5 can be further refined with PCK6. 

The degree of convergence to the correct structure, 
using PCK5, has already been discussed (Williams, 
1969). The models obtained from PCK5 are usually 
good enough to begin a structure factor refinement, 
based on observed X-ray or neutron diffraction data. 
The degree of convergence of PCK6 is illustrated by 
Williams (1966b) for hydrocarbon structures. Typi- 
cally, the atomic positions may be calculated to 0.005 
nm accuracy and the lattice constants to 1% accuracy. 
Either or both of the above Fortran computer pro- 
grams are available from the author. 
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Electron Population Analysis of Accurate Diffraction Data. IV, Evaluation of Two-Center 
Formalisms in Least-Squares Refinement 
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Least-squares formalisms which explicity include scattering by both one and two-center orbital products 
are applied to a set of theoretical scattering factors for diborane and to the experimental data on cyan- 
uric acid. The diborane calculations confirm the accuracy of the formalisms employed and indicate the 
importance of selecting an appropriate basis set of atomic orbitals. They further indicate that (1) net 
electron populations in bonds and on atoms can be determined more precisely than individual population 
parameters; (2) the set of parameters should be limited by molecular symmetry and assumptions about 
the symmetry of the bonds; (3) only one of a set of highly correlated parameters on an atom or in a 
bond should be allowed to vary; (4) the most reasonable basis set is the one giving the best agreement 
factor. This experience is applied to the refinement of cyanuric acid. It is found that the isolated atom 
HF functions give the best description of the experimental density. A Mulliken population analysis of 
the results reproduces the chemical symmetry of the molecule. In general the conclusions reached on 
diborane are compatible with the analysis of the experimental data. Electron-density maps on cyanuric 
acid, based on the least-squares population parameters, show that a good description of the density is 
obtained with a number of parameter sets. These electron-density maps show significant disagreement 
with thermally-smeared theoretical maps, indicating that the INDO and ab initio minimal basis set (STO- 
3G) calculations do not properly predict the density in the bonding and lone-pair regions of the cyan- 
uric acid molecule. A transformation to uncorrelated combinations of population parameters is pro- 
posed to facilitate analysis of the numerical results and comparison with theoretical population param- 
eters. 

Introduction 

In the first two articles of this series we have described 
formalisms and inherent limitations in the charge re- 
finement of accurate diffraction data (Coppens, Wil- 
loughby & Csonka, 1971) and the application of a 
number of one-center formalisms to some organic and 
inorganic molecules (Coppens, Pautler & Griffin, 1971). 

The present manuscript describes an evaluation of 
X-ray scattering formalisms which explicitly include 
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two-center terms, i.e. products between atomic orbitals 
centered on different atoms. The formalisms are first 
applied to a theoretical set of structure factors for di- 
borane (B2H6), obtained through a numerical Fourier 
transform of the results of a minimal basis set calcula- 
tion (Jones & Lipscomb, 1970). Experience obtained 
in this treatment is then applied to the low temperature 
X-ray diffraction data on cyanuric acid (Verschoor & 
Keulen, 1971), utilizing positional and thermal param- 
eters from a parallel neutron diffraction study (Cop- 
pens & Vos, 1971). In both calculations a variety of 
different parameter and atomic orbital basis sets are 
tested. To provide a further evaluation of the forma- 
lisms, results are compared in electron-density space 


